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Preface
This book represents recent developments and research activities in the field of nano-
materials with particular focus on biological and pharmaceutical applications.

The book is divided into four sections, each comprising chapters with a com-
mon theme. Section I contains seven chapters dealing with nanomaterials for drug 
delivery. Topics covered in Section I include stimuli-responsive nanostructured silica 
matrixes, gold nanoparticles, and liposomes for targeting drug delivery applications 
and dental applications. In addition, material on nanocarriers and nanoparticles as 
cancer therapeutics and as peptide therapeutics are covered in this section. Section II 
consists of two chapters dedicated to antimicrobial nanomaterials. Section II covers 
topics on the influence of surface characteristics on microbial adhesion and summa-
rizes recent advances in antimicrobial nanostructured polymers for medical applica-
tions. Section III contains five chapters dealing with nanomaterials in biosensors, 
and Section IV consists of a single chapter on safety of nanomaterials. Section III 
covers recent advances in nanodiagnostic techniques for infectious agents, chromo-
genic biosensors for pathogen detection and electrochemical biosensors for detecting 
DNA damage and genotoxicity, and molecular imaging with quantum dots including 
surface modifications by polymers for biosensing applications.

The authors who contributed to this book are very experienced researchers with 
years of experience in industry and academia. All of the book contributors are 
experts in their field with considerable experience in researching, developing, and 
applying the proposed techniques. We sincerely hope that the information in this 
book will be a valuable resource for clinicians, microbiologists, cell biologists, phar-
macists, chemists, and material scientists. This fascinating and comprehensive book 
will reinforce the multidisciplinary nature of the nanomaterial field.

Polina Prokopovich
Cardiff University, United Kingdom
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5 Nanoparticles
A Promise for Host Defense 
Peptide Therapeutics

Carlos López-Abarrategui, 
Anselmo J. Otero-González, 
Annia Alba-Menéndez, 
Edilso Reguera, and Octavio Luiz Franco

ABSTRACT

Antibiotic resistance developed by bacterial and fungal pathogens is one of 
the current major health problems in the world; hence, the development of 
newer antimicrobial therapies based on novel antimicrobial molecules that 
diminish this resistance is urgently required. Antimicrobial peptides or, in a 
wider concept, host defense peptides (HDPs), a diverse set of peptides that are 
evolutionarily conserved to combat or enhance immunity to infections in all 
forms of life, could be a reassuring and complementary solution to this health 
emergency. Many antimicrobial peptides could combine antimicrobial activity 
with immunomodulatory and anti-inflammatory activities. Although bacteria 
and fungi have resistance mechanisms against these peptides, their multifunc-
tionality can evade such resistance. HDPs exhibit a broad spectrum of activ-
ity against a wide range of microorganisms. Different mechanisms of action 
have been proposed for these molecules, which indicate that many of them 
could have more than one antimicrobial target at the cellular level. Many of 
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them interact with plasma membrane (pore formation, physical and functional 
disorganization, or simply transit to localize intracellular targets). One of the 
main difficulties for the utilization of HDPs for microbial control is peptide 
inactivation by proteinases, which is a real resistance mechanism shared by 
multiple human pathogens. Also, inactivation in the presence of salts, serum, 
or microbial components is an additional cause of no in vivo activity. The pre-
ventive action of HDPs is controversial not only for its effectiveness itself but 
also from a cost–benefit point of view. The potential immunomodulatory effect 
of HDP is promising. The combination of new peptides with novel delivery 
techniques is another approach that could become effective for such peptides. 
Despite the success in preclinical models, the clinical results of these mole-
cules have not been good enough to approve them for medical use. Alternatives 
to increase the stability, efficacy, and biodistribution of HDPs are required. 
Different nanosystems have been demonstrated to develop medical applica-
tions. Nanoparticles (1–100 nm) of different materials are characterized by 
large surface-to-volume ratio, with a large fraction of their atoms located at 
the surface with unsaturated coordination bonds. Nanoparticles basically are 
obtained by bottom-up procedures and by top-down routes. They can be func-
tionalized by the incorporation, through acid–base reactions or coordination 
interactions, of molecular species to allow their conjugation to biomolecules or 
to provide functional properties. The antimicrobial activity of different types 
of nanoparticles has been demonstrated when metals exhibit antibacterial 
properties in their bulk. The antimicrobial effect of these metals increases at 
nanoscale dimensions. Conjugation of HDPs with nanoparticles could increase 
the antimicrobial activity of the combined parts. Nanoparticles could be a per-
fect carrier for HDPs because of their multifunctional activities.

Keywords: Nanoparticles, Antibiotics, Antimicrobial peptides, Host defense, 
Bacterial infection

5.1 � INTRODUCTION

Nowadays, novel infectious diseases have emerged, many of which are responsible 
for life-threatening disorders (Snell 2003). A lack of new antibiotics for treatment of 
illnesses, combined with the appearance of multi–drug-resistant strains, has gener-
ated the imperative requirement for innovative strategies in the development of newer 
antimicrobial therapies (Arias and Murray 2009). Host defense peptides (HDPs) are 
an essential first line of defense against pathogenic infection, showing strictly cor-
related immunomodulatory and antimicrobial properties. They constitute a novel 
strategy for the development of antimicrobial therapies (Afacan et al. 2012). Since 
they mainly act over microbial membranes or host immune cells, HDPs have shown 
a wide spectrum of activity that included bacteria, virus, and fungi with an ability 
to cause infectious diseases (Mulder et al. 2013; Theberge et al. 2013). Furthermore, 
such compounds have also been the focus of attention because of their low risk of 
triggering microbial resistance owing to their multiple mechanism of action and, 
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133Nanoparticles

therefore, are also investigated as a novel class of antibiotics, additives, and vaccine 
adjuvants (Zhang and Sunkara 2014). Cathelicidins and β-defensins are among the 
most well-known classes of HDPs, which are commonly found in many different 
animal species (Silva et al. 2011).

Unfortunately, the preclinical success achieved with these molecules has not been 
translated to the clinic yet (Eckert 2011). The instability, efficacy, and biodistribution 
of HDPs in clinical trials have been the major drawbacks (Brogden and Brogden 
2011). Development of nanoparticles for entrapment and delivery of HDPs could rep-
resent an alternative to bypass the abovementioned clinic obstacles (Brandelli 2012). 
Here, we provide an overview and discuss the potential application of nanoparticles 
conjugated to HDPs in overcoming infectious diseases.

5.2 � HOST DEFENSE PEPTIDES

HDPs, formerly designed as host defense peptides, are widely spread in nature from 
prokaryotic organisms to vertebrates (Brown and Hancock 2006). These molecules 
are conserved elements of the natural immunity and have a broad-ranging activity 
against infectious agents (Jenssen et al. 2006). They can modulate cell functions such 
as chemoattraction, gene transcription, and cytokine production or release. Also, these 
peptides may be involved in wound healing and angiogenesis (Lai and Gallo 2009).

HDPs are generally small molecules currently containing approximately 12–50 
amino acid residues (molecular weight generally <10 kDa), cationic (net charge of +2 
to +7), and frequently quite hydrophobic (Brown and Hancock 2006; Jenssen et al. 
2006; Yount et al. 2006). Many of these peptides suffer different posttranscriptional 
modifications, with disulfide bond formation and C-terminal amidation as the most 
common ones (Andreu and Rivas 1998). For example, defensins are a widely distrib-
uted family of HDPs characterized by specific rearrangements of disulfide bridges 
(Selsted and Ouellette 2005). The disulfide bridges improve proteolysis resistance 
and, in some cases, seem to be fundamental for microbial killing (Tanabe et al. 2007; 
Wanniarachchi et al. 2011), while in others, they do not appear to be a requirement 
for direct antimicrobial activity (Mandal et al. 2002; Schroeder et al. 2011). On the 
other hand, some antimicrobial peptides such as clavanins (Lee et al. 1997) present 
a C-terminal amidation that confers resistance to proteolysis by carboxypeptidases 
and increases the cationic charge of the molecule (Andreu and Rivas 1998).

Generally, HDPs are genetically encoded molecules included together in mul-
tigenic families such as defensins, cathelicidins, cecropins, and dermaseptins 
(Patrzykat and Douglas 2005). The expression of these molecules could be constitu-
tive or inducible. In prokaryotes, the production of bacteriocins, which are bacteri-
ally produced antimicrobial peptides, is generally regulated by a quorum-sensing 
mechanism of autoinduction when arriving at a certain cell density (Turovskiy et 
al. 2007). On the other hand, in eukaryotes, the expression of several HDP genes is 
regulated in different physiological stages: infection (Diamond and Bevins 1994), 
injury or inflammation (Dorschner et al. 2001), and stress (Aberg et al. 2007). That 
situation depends on the stimulation and the cell type and it is controlled or synchro-
nized with the expression of other elements of natural immunity and inflammation 
(Braff and Gallo 2006; Selsted and Ouellette 2005).
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According to their secondary structure in solution, these molecules can be gener-
ally classified into one of four structural classes: (1) α-helix, (2) β-sheet stabilized by 
two or three disulfide bridges, (3) extended structures with one or more predominant 
residues (like tryptophan and proline rich), and (4) loop owing to the presence of 
a single disulfide bridge (Jenssen et al. 2006; Lai and Gallo 2009). Many of these 
peptides exist in a relatively unstructured conformation in solution and fold into 
their ultimate arrangement when interacting with the unique environment of biologi-
cal membranes (Tossi et al. 2000). The capability to interact with lipid bilayers is 
essential for the diverse antimicrobial activities of HDPs, although complete mem-
brane destabilization is not always required (Zasloff 2002). The enormous potential 
of HDPs to interact with biological membranes might bring some concerns on the 
possible toxicity of HDP-based therapy to host cells, and thus, the selectivity of these 
molecules constitutes an important issue.

5.3 � MECHANISM OF ACTION OF HDPs

Regarding HDPs’ mechanism of action, not only are they antibacterial molecules 
(even against strains resistant to conventional antibiotics) (Miyakawa et al. 1996; 
Saiman et al. 2001), they could also have antimicrobial activity against fungi (Silva 
et al. 2014), enveloped viruses like HIV and influenza (Chang et al. 2005; Salvatore et 
al. 2007), and protozoan parasites as important as Plasmodium falciparum (Gelhaus 
et al. 2008), Trypanosoma cruzi, and Leishmania braziliensis (Lofgren et al. 2007). 
Moreover, their toxicity toward cancerous cells has been documented (Do et al. 
2014; Hsu et al. 2011). This antimicrobial activity could be by direct action against 
microbial cells or by an indirect activation of cells from the innate immune system at 
the site of infection (Alba et al. 2012; López-Abarrategui and Otero-Gonzalez 2013).

HDPs can deal with the lipid bilayer producing cellular death by different mecha-
nisms: (1) changing membrane potential (Westerhoff et al. 1989), (2) transmembrane 
pore formation (Matsuzaki 1998), (3) modifying the current distribution of mem-
brane lipids with destabilization of membrane structure (Matsuzaki et al. 1996), 
(4) triggering lethal processes such as the induction of autolytic enzymes (Bierbaum 
and Sahl 1985), and (5) striking crucial intracellular targets after membrane penetra-
tion (Cudic and Otvos 2002; De Brucker et al. 2011; Scocchi et al. 2011). All these 
different routes underlying the direct antimicrobial activity of HDPs require an ini-
tial interaction with biological bilayers, and therefore, the use of model membranes 
has been widely accepted for learning about this interaction (Hancock and Rozek 
2002). The different models proposed can be divided into transmembrane pore mod-
els, which imply the formation of actual membrane pores or nonpore ones instead 
(Wimley and Hristova 2011).

Furthermore, even when the nonspecificity between the interaction of HDPs and 
membrane lipids has been widely accepted, recent data reveal a more complex sce-
nario. The affinity of some defensins for some specific microbial lipids has been 
demonstrated (Wilmes et al. 2011). In vitro, the inhibition of cell wall synthesis 
combined with binding experiments and nuclear magnetic resonance spectros-
copy demonstrated that Plectasin, a fungal defensin produced by Pseudoplectania 
nigrella, inhibits the growth of Gram-positive bacteria through the binding to 
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135Nanoparticles

the cell wall precursor Lipid II (Schneider et al. 2010). Also, the inhibition of 
Staphylococcus aureus growing by the interaction of the invertebrate defensins 
Cg-Defh1, Cg-Defh2, and Cg-Defm, from the oyster Crassostrea gigas, with Lipid 
II has been demonstrated (Schmitt et al. 2010). On the other hand, the binding of 
the plant defensins DmAMP1 and RsAFP2 to sphingolipids has been demonstrated 
(Aerts et al. 2007; Thevissen et al. 2003). All these data confirmed the existence of 
the specific interaction of HDPs with components of microbial membranes. This 
type of interaction was derived from a novel antimicrobial mechanism that could be 
conserved between different species.

As has been discussed, many of the mechanisms proposed for describing HDP–
membrane interaction are derived from experimental data achieved with model 
membrane, and therefore, the conclusions might be limited. Also, the relevance of 
these considerations is limited in relation to in vivo infection experiments where 
the pharmacokinetic properties of peptides (Brinch et al. 2009), serum inhibition of 
peptide activity (Selsted and Ouellette 2005), and microbial resistance mechanisms 
(Kraus and Peschel 2006) could influence the active doses needed to eliminate the 
infection. For example, according to Selsted and Ouellette (2005), under physiologi-
cal conditions, it is necessary for 1–10 mg/ml of defensin to be fungicidal, conditions 
only found locally in polymorphonuclear leukocytes, in phagolysosomes, and in the 
lumen of the crypts of Lieberkuhn. For this reason, it is not practical to consider 
a peptide-based therapy relying only on its direct antimicrobial activities. Instead, 
features like immunomodulation could complement and enhance the overall action 
of such peptides against infections. This balance could be critical in the success of 
peptide-based therapies.

5.4 � HDP THERAPEUTICS

One of the main pitfalls for the utilization of HDPs for bacterial control is peptide 
inactivation by proteinases. HDP proteolytic inactivation is a real resistance mecha-
nism shared by multiple human pathogens. In an interesting study using group A 
streptococci also known as GAS, the secretion of at least two factors, cysteine pro-
tease SpeB (Schmidtchen et al. 2002) and streptococcal inhibitor of complement 
(Frick et al. 2003), enabled in vitro inactivation of LL-37. Such hypothesis was also 
proven by Johansson et al. (2008) by using GAS in vivo models clearly showing 
SpeB-mediated LL-37 inactivation representing a bacterial resistance mechanism 
at severely infected tissue sites. Furthermore, as mentioned earlier, it is notable that 
HDPs’ biological activities are frequently missing at physiologically significant con-
centrations of glycosaminoglycans, salt, and serum (Afacan et al. 2012). However, 
despite their enormous potential, are those peptides really effective at in vivo mod-
els? This is an important question to ask, since the in vitro activity does not reveal 
too much about the real activities of HDPs.

In this context, several in vivo trials using animal models have been performed 
in the last few years (Hilchie et al. 2013). Interestingly, the addition of HDP pep-
tides before initiating infection in a mouse leads to infection reduction (Nijnik et 
al. 2010; Scott et al. 2007). Moreover, although an extremely weak antimicrobial 
activity, HNP-1 was able to protect mice from S. aureus and Klebsiella pneumoniae 
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136 Biological and Pharmaceutical Applications of Nanomaterials

infections (Nizet et al. 2001). In principle, anti-infective HDPs’ capability could be 
related to their ability to manipulate immune-cell functions (indirect activation of 
the innate immune system), direct antimicrobial activities, or a combination of both 
functions. Nevertheless, once bactericidal properties are mainly lost under physi-
ological conditions (Afacan et al. 2012; Selsted and Ouellette 2005), it has been 
suggested that such peptides are anti-infective because of their immunomodulatory 
properties. This proposition was reinforced when the innate defense regulator pep-
tide IDR-1, derived from bovine bactenecin, did not show in vitro antibacterial activ-
ities. However, such a peptide was extremely protective in several mouse models of 
bacterial infections (Scott et al. 2007). Surprisingly, such a peptide was protective 
when delivered topically or systemically through subcutaneous, intraperitoneal, and 
intravenous means and also effective when utilized after or before bacterial chal-
lenge. Undeniably, IDR-1 was capable of stimulating bacterial clearance by acting 
directly on the host innate immune response, decreasing tumor necrosis factor, and 
enhancing chemokine production including monocyte chemotactic protein-1.

Additionally, other IDR peptides including IDR-HH2, IDR-1002, and IDR-1018 
were also effective in controlling S. aureus infections (Achtman et al. 2012; Rivas-
Santiago et al. 2013). Moreover, IDR-1002 was also able to protect mice from inva-
sive Escherichia coli infection but was unable to control Mycobacterium tuberculosis 
infections. Otherwise, IDR-HH2 and IDR-1018 were capable of reducing bacterial 
counts in mouse models of drug-sensitive and multidrug-resistant M. tuberculosis 
infections (Rivas-Santiago et al. 2013). Such data clearly suggest that structure and 
activity are clearly related, although it could be impossible to cross the specificity 
information for each bacterium. IDR-1018 was also evaluated in diabetic and nondia-
betic wound-healing models (Steinstraesser et al. 2012). In such reports, IDR-1018 
was compared to LL-37 and HDP-derived wound-healing peptide HB-107. IDR-1018 
was suggestively less cytotoxic when compared to LL-37 or HB-107. Surprisingly, 
although there is complete inefficacy of IDR-1018 to control bacterial colonization, 
a significant improvement in wound healing in S. aureus–infected porcine and non-
diabetic models was observed, improving the potential of IDRs and HDPs as phar-
maceutical drugs.

Moreover, some studies have focused on polyalanine peptides. Among them is the 
multifunctional peptide Pa-MAP derived from the polar fish Pleuronectes america-
nus (Migliolo et al. 2012). Pa-MAP was evaluated in intraperitoneally infected mice 
with a sublethal concentration of E. coli (Teixeira et al. 2013), exhibiting the capabil-
ity to prevent E. coli infection and the upsurge in mice survival, being as effective as 
ampicillin. In addition, mice treated with Pa-MAP have their weight loss reverted. 
Interestingly, despite other peptides having shown their main in vivo bactericidal 
activities related to immune response, no immunomodulatory activity was observed 
in such reports, suggesting that bacterial clearance activity obtained could be related 
to a direct bactericidal effect.

Another option is to discover not only novel peptides but also novel delivery tech-
niques. For example, Ghali et al. (2009) established the viability of protein delivery 
via microvascular free flap gene therapy, challenging such approach for recalcitrant 
infections. In this context, authors investigated the LL37 production delivered by 
ex vivo transduction of the rodent superficial inferior epigastric free flap containing 
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Ad/CMV-LL37. A vascular permeabilizing agent, vascular endothelial growth fac-
tor, was also administered during transduction with adenoviral vectors in an effort 
to enhance transduction efficiency. Moreover, a rodent model of chronic wound 
infection sewn with bioluminescent S. aureus was utilized. Data obtained showed a 
significant reduction in bacterial loads from infected catheters owing to the expres-
sion of LL37 for 14 days, increasing bacterial clearance. Another option consists in 
the utilization of transgenic mice expressing HDPs. In this field, transgenic mice 
expressing human beta defensin 2 on different tissues including the intestine, tra-
chea, lung, and skin were more resistant to S. aureus infection, despite not reaching 
complete protection (Zhang et al. 2006).

The pharmacological potentials are enormous and in vivo trials are just begin-
ning. At the moment, the in vivo peptide activities are completely unpredictable and 
HDPs that show amazing in vitro activities could be extremely pharmacologically 
useless. Otherwise, peptides that show inconsiderable activities at bioassays could be 
amazing anti-infectives when challenged at in vivo models. The future of HDPs, as 
pharmaceutical drugs, is a complete open field and totally under construction.

Despite the success of HDPs in preclinical models, the clinical results of these 
molecules have not been good enough to approve them for medical use. There is no 
doubt that alternatives to augment the stability, efficacy, and biodistribution of HDPs 
are needed. Different nanosystems have emerged to develop biomedical applications 
(Kingsley et al. 2006; Seil and Webster 2012). In fact, some of them have been used 
to potentiate the activity of HDPs (Brandelli 2012; Urban et al. 2012).

5.5 � NANOPARTICLES

Nanoparticles (metals, semiconductors, polymers, and magnets) have a size of 
between 1 and 100 nm and are characterized by large surface-to-volume ratio, and 
from this fact, a large fraction of their atoms are located at the surface with unsatu-
rated coordination environments. These atoms are active species able to catalyze 
redox reactions and to form coordination bonds with surface guest molecules. These 
are probably the most attractive properties of nanoparticles for their application in 
biotechnology. For instance, the presence in transition metal oxide nanoparticles of 
partially naked surface metal sites explains their enzyme-like properties and micro-
bial activity (Biju 2014; Ul-Islam et al. 2014). The coordination chemistry at the 
nanoparticle surface supports the possibility of their functionalization and conjuga-
tion to biomolecules to form programmable molecular engines with unique multi-
functional properties, including molecular recognition, target-oriented biosensing, 
remote-guided nanodevices, and drug and gene transport and delivery, among others. 
The particles’ core properties usually help in their interaction with external agents 
(e.g., they receive energy from an external source and liberate it in the form of heat 
into the biological environment). The hyperthermia treatment of cancer tumors using 
magnetic nanoparticles and a variable external magnetic field and the photodynamic 
therapy are good examples in that sense (Reddy et al. 2012; Vatansever et al. 2013). 
All these potential applications of nanoparticles in biomedical biotechnology will be 
briefly discussed below, with emphasis on the role of nanoparticles as antimicrobial 
agents conjugated or not with HDPs.
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138 Biological and Pharmaceutical Applications of Nanomaterials

5.6 � NANOPARTICLE PREPARATION, FUNCTIONALIZATION, 
AND BIOCONJUGATION

Nanoparticles, independently of their nature (metals, semiconductors, polymers, and 
magnets; inorganic, organic, and inorganic–organic hybrid), are obtained by two 
preparative routes: (1) bottom-up procedures, commonly using colloidal and coordi-
nation chemistry, molecular beam epitaxy, laser ablation, chemical vapor deposition, 
and so on; and (2) top-down routes, for example, milling or grinding (Faramarzi 
and Sadighi 2012; Sweet et al. 2012). Chemical routes, particularly those involving 
colloidal chemistry, allow appropriate control of particle size and shape, nanocrys-
tal morphology, and surface active sites, which are structural features required for 
their biological applications, both in vitro and in vivo, including functionalization 
and bioconjugation. In this context, functionalization comprises the incorporation, 
through acid–base reactions or coordination interactions, of molecular species to 
the particles’ surface to allow their conjugation to biomolecules or to provide func-
tional properties for molecular recognition and separation, target modification and 
activation/inactivation, drug and gene delivery, bioimaging and sensing, and so forth 
(Schrofel et al. 2014). The chemical routes are also appropriate for tailoring the parti-
cles’ composition, size, and shape, which determine their optical, electrical, thermal, 
and magnetic properties (Akbarzadeh et al. 2012).

The functionalization and bioconjugation of nanoparticles depend on their nature 
and surface composition. In this sense, silica nanoparticles illustrate the importance 
of the surface chemistry having an appropriate interface for the functionalization 
and bioconjugation processes. Silica is a hydrophilic and biocompatible material; it 
is transparent to the optical region of the electromagnetic spectral region and has a 
high physical and chemical stability. In addition, the preparative methods to obtain 
silica nanoparticles and mesoporous silica nanostructures from sol-gel and colloidal 
routes are well established, including the control of the pore size and shape (Trewyn 
et al. 2007). A wide diversity of reactive functional species (including carbonyl, pri-
mary and secondary amine, hydroxyl, azido, and alkyl halogen groups) can be incor-
porated into the silica surface during the preparative process through postsynthesis 
surface modification (Figure 5.1). Such reactive surface species, with both basic and 
acidic features, serve as anchoring sites for organic and biological molecules, includ-
ing fluorescent markers, antibodies, nucleic acids, peptides, and proteins. Biological 
molecules have heteroatomic sites with basic and acidic characteristics able to 
form chemical bonds with the silica surface reactive groups. Practically all the avail-
able bioconjugation protocols are applicable for silica nanostructures (Trewyn et al. 
2007).

The abovementioned features of silica support its incorporation to core@shell 
nanostructures, particularly when the core has limited chemical stability in biologi-
cal environments or liberates toxic species (e.g., CdS luminescent quantum dots) or 
when the availability of an easily functionalizable shell is recommended. Quantum 
dots are semiconductor nanostructures (ZnS, ZnSe, ZnTe; CdS, CdSe, CdTe, ZnO, 
etc.) that absorb light in the UV-vis spectral region, promoting an electron from the 
valence band to the conduction band. Part of the energy of the resulting excited state 
is then transferred to the network solid as heat through the excitation of phonons 
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139Nanoparticles

and that remaining is emitted as fluorescence, from trap states, in the visible and 
NIR spectral region. Both the spectral region where the quantum dot absorbs light 
and the region where it emits can be tuned, controlling its size and shape. The quan-
tum efficiency for the emission process and the line width of the emitted light are 
controllable parameters through particle surface passivation incorporating a shell 
of appropriate molecular species (e.g., trioctylphosphine, trioctylphosphine oxide, 
etc.). The most important property of quantum dots, in the context of biomedical 
applications, is the tunable photoluminescence. This determines their application as 
fluorescent labels in analytical biochemistry, imaging, and sensing (Chinnathambi 
et al. 2014). Compared with organic fluorescent markers, quantum dots show a 
higher luminescence, with narrow emission lines, and are practically free of photo 
bleaching. The synthesis of high-quality quantum dots commonly involves the use 
of organic reagents, and the resulting nanoparticles are obtained with a surface layer 
of organic molecules with hydrophobic character. In consequence, their functional-
ization and bioconjugation must be preceded by an exchange of surface ligands. In 
order to prepare the surface for its further functionalization and bioconjugation, the 
ligand exchange reaction must produce a hydrophilic surface with available reac-
tive species, for example, carboxyl, amine, and hydroxyl groups (Jiang et al. 2014; 
Kuzyniak et al. 2014). The degradation of quantum dots and the heavy metal libera-
tion into the biological environment can be prevented, creating a thin surface coating 
of silica (Figure 5.1) and using the above-discussed benefits of this last material for 
the nanoparticles’ functionalization and conjugation or growing a layer at the surface 
of a less toxic semiconductor, for instance, ZnX (X = O, S, Se, Te). In this last case, 
at the surface, an alloy or solid solution of the two semiconductors is formed, which 
also helps tune the emission spectra (Estévez-Hernández et al. 2012). Quantum dots 
have found applications in photodynamic therapy as well through their conjugation 
to photosensitizers. The energy of the excited state is transferred to the anchored sen-
sitizer molecule and finally used for the singlet oxygen and reactive oxygen species 
(ROS) production (Biju et al. 2010).
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FIGURE 5.1  A nanoparticle (metallic, semiconducting, magnetic) with a surface layer 
(shell) of silica to facilitate its functionalization and bioconjugation. Indicated are four pos-
sible functional groups (R-NH2, R-SH, R-OH, and R-CO2H).
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140 Biological and Pharmaceutical Applications of Nanomaterials

Metallic nanoparticles have attracted considerable attention for biological appli-
cations not only because of their metal bioactivity but also because of their optical 
properties based on light absorption through surface plasmon resonance (Schrofel et 
al. 2014). Nanoparticles of silver and gold show a strong plasmon resonance effect 
in the UV-vis-NIR spectral region, which is tunable by modifying particle size and 
morphology and through the chemical species anchored to their surface. Plasmon 
resonance light absorption leads to a color change for the incident radiation, which is 
utilized for imaging the region where the nanoparticles are located. If the nanopar-
ticles are functionalized with target-oriented groups, for example a monoclonal anti-
body, the optical spectra can be used for sensing purposes. The energy absorbed 
by the particle from the incident radiation is then partially liberated to the particle 
environment in the form of heat. This is exploited in photothermal cancer therapy. 
A fraction of the adsorbed light is reemitted as bright vis-NIR photoluminescence, 
which provides an image of the sites where the nanoparticles have been adsorbed 
(Schrofel et al. 2014). The surface plasmon resonance also supports surface-enhanced 
Raman spectroscopy, a technique with an ultrahigh sensitivity for adsorbed species 
on metallic surface. The adsorption of a molecule on a metal surface leads to an 
increase of approximately 1012 times in the Raman signal intensity. This technique 
allows the sensing of a single molecule when it is adsorbed on a metal nanoparticle, 
for instance, silver or gold. Such ultrahigh sensitivity makes possible the detection of 
quite a small amount of molecular pathological markers in biological fluids or tissues 
and for in vitro and in vivo marker-specific imaging (Schlücker 2010). Metals show 
strong x-ray absorption, and from this fact, the target-oriented biosensing and linking 
of metal nanoparticles to specific biological sites in tissues serve as contrast agent in 
x-ray imaging. Similar to quantum dots, as-synthesized metal nanoparticles usually 
require capping ligand exchange to allow their functionalization and bioconjugation. 
From such ligand exchange, nanoparticles with a wide diversity of reactive surface 
groups can be prepared, including carboxyl acids, amines, azides, maleimides, alco-
hols, amino acids, peptides, and proteins. These molecules have heteroatomic sites 
able to form a chemical bond with the surface metal sites. For instance, the conju-
gation of gold nanoparticles exchanged with thiolated carboxylic acids to peptides, 
proteins, amino acids, and antibodies is relatively simple (Shah et al. 2014).

Related to the large availability of carbon in nature, the wide diversity of car-
bon nanostructures (nanotubes, fullerenes, graphenes, nanodiamonds, and onions), 
and unique physical properties (strong absorption of light in the UV-vis-NIR spec-
tral region, NIR photoluminescence, high photothermal response, tunable electrical 
behavior, etc.), the potential applications of carbon-based materials in biology and 
pharmacy are receiving increasing attention (Moon et al. 2009). Similar to silica, the 
surface of carbon nanostructures is functionalizable with a wide variety of reactive 
groups, among them, carboxylic acids, amides, phenols, alkyl halides, and alcohols. 
The conjugation to biomolecules and the incorporation in the surface of target-oriented 
molecules, for example antibodies, allow the conjugate sorption on specific molecular 
or tissue region for imaging, sensing, drug and gene delivery, or target modification. 
Target modification involves the therapy for cancer and microbial infections, through 
photothermal and oxidative stress effects. Carbon nanostructures show exceptional 
abilities for production of ROS, including singlet oxygen. The photothermal ablation 
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of targeted cancer cells and tumors using NIR light or radiofrequency is an attractive 
research area currently in progress for the application of functionalized and bioconju-
gated carbon nanostructures (Moon et al. 2009).

Magnetic nanoparticles have additional attractive characteristics, compared with 
their metallic, semiconducting, silica- or carbon-based analogs, for biological and 
pharmaceutical applications. Magnetic nanoparticles are susceptible to remote guid-
ing through an external magnetic field, and once they are located on the selected 
target, the application of an oscillating magnetic field permits local heating for tar-
get modification, including cellular death. This last possibility supports their poten-
tial application for cancer treatment. When magnetic nanoparticles are subjected 
to a time-varying magnetic field of low frequency (250 Hz), the particles receive 
energy from the applied magnetic field through orientation of their magnetic dipole 
moments, which is then liberated into the biological environment when they are 
disoriented (Figure 5.2). By this mechanism, the tumor is warmed to a tempera-
ture of 42°C–45°C, where the tumor cells are irreversibly damaged (Reddy et al. 
2012). A heating time of approximately 30 min could be sufficient to destroy a tumor. 
Hyperthermia treatment of cancer is being intensively studied. It supposes that the 
magnetic nanoparticles are directed to and adsorbed by the target sites, by using an 
external magnetic field as well as through their functionalization with highly specific 
target-recognizing molecules, for example, monoclonal antibodies.

Nanoparticles of iron oxides, particularly of magnetite (Fe3O4), are the com-
monly used magnetic nanoparticles for biological and pharmaceutical applications. 
The preparation of this iron oxide is relatively simple; it can be obtained practically 
free of toxic by-products, and its tolerance for biological systems is high. The par-
tially naked iron sites and the OH groups found at magnetite particles’ surface are 
appropriate reactive species for their functionalization or bioconjugation. When a 
higher versatility for the functionalization is required or a higher chemical stability 
is recommended, a core–shell system with silica, Fe3O4@SiO2, could be prepared 
(Figure 5.1). The applications of magnetic nanoparticles in biomedical sciences 
are diverse (Erathodiyil and Ying 2011; Lopez-Abarrategui et al. 2013; Reddy et 
al. 2012): analytical biochemistry for separation and concentration of analytes and 

FIGURE 5.2  Localized drug delivery using magnetic nanoparticles and a magnetic tape.
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molecular markers from biological fluids, drug and biomolecule transport and deliv-
ery in in vivo systems, chemoembolization for tumor vessel blockage in order to 
induce hypoxia, magnetically guided radioimmunotherapy, and as contrast agent for 
magnetic resonance imaging through the tuning of the transverse relaxation time.

5.7 � ANTIMICROBIAL PROPERTIES OF NANOPARTICLES

The antimicrobial activity of different types of nanoparticles has been demonstrated. 
In fact, some metals like zinc, silver, and copper exhibit antibacterial properties in 
their bulk form. The antimicrobial effect of these metals increases at nanoscale 
dimensions (Seil and Webster 2012). The mechanism of action of these nanoparticles 
varies from one nanoparticle to another. Although these antimicrobial mechanisms 
are not fully understood, some are related to the damage caused by the physical 
structure of the nanoparticles, whereas others are associated with the release of 
metal ions from nanoparticle surfaces. For instance, the mode of action of silver 
nanoparticles is reliant on Ag+ ions, which interact with respiratory enzymes, the 
electron transport system, and DNA to inhibit microbial growth (Li et al. 2006).

The antibacterial activity against S. aureus of polysaccharide-reduced silver 
nanoparticles has been confirmed (Kemp et al. 2009). Furthermore, the inhibition 
(in vitro and in vivo) of different viruses by silver nanoparticles has also been estab-
lished (Baram-Pinto et al. 2009; Rai et al. 2014; Xiang et al. 2013). Recently, an 
antimicrobial peptide (G3R6TAT) was conjugated to silver nanoparticles (Liu et al. 
2013). The conjugated peptide showed enhanced antibacterial and antifungal activity 
compared with silver nanoparticles. These results suggest that silver nanoparticles 
have potential in antimicrobial therapeutic applications.

Antibacterial as well as antifungal activity has also been documented for ZnO 
nanoparticles (Jones et al. 2008; Siddique et al. 2013; Wahab et al. 2010). The mecha-
nism of action of many of these ZnO nanoparticles involves the production of ROS 
(Dutta et al. 2012; Raghupathi et al. 2011).

Iron oxide is not antibacterial in its bulk form but may exhibit antibacterial prop-
erties as nanoparticles. For example, magnetite nanoparticles coated with quater-
nary ammonium were bactericidal against E. coli (Dong et al. 2011). Furthermore, 
bacitracin-conjugated iron oxide (Fe3O4) nanoparticles have shown higher antimicro-
bial activity against both Gram-positive and Gram-negative organisms, in compari-
son with the bacitracin peptide (Zhang et al. 2012). Because of this improved activity, 
conjugated magnetic nanoparticles allow lower dosages and collateral effects of the 
antibiotic. Moreover, cell cytotoxicity tests indicate that bacitracin magnetic nanopar-
ticles show very low cytotoxicity to human fibroblast cells, even at relatively high 
concentrations. Because of their antibacterial effect and magnetism, the conjugated 
bacitracin magnetic nanoparticles have potential application in magnetic-targeting 
biomedical applications. On the other hand, the synthesis of multimodal nanopar-
ticles with magnetic core and silver shell showed very significant antibacterial and 
antifungal activities against 10 tested bacterial strains (minimal inhibitory concen-
tration [MIC] from 15.6 to 125 mg/l) and 4 Candida species (MIC from 1.9 to 31.3 
mg/l) (Prucek et al. 2011). In another experiment, the HDP LL37 was conjugated to 
magnetic nickel nanoparticles coated with a nanolayer biofilm of polyacrylic acid. An 
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effective bactericidal activity was demonstrated for the conjugated peptide (Chen et 
al. 2009). Similarly, citric acid–functionalized manganese ferrites were conjugated 
with the antifungal peptide Cmp5. The antimicrobial activity of the conjugated fer-
rites was higher than their bulk counterparts (Lopez-Abarrategui et al. 2013).

These results reinforce the importance of nanochemistry to fight different infec-
tious diseases. On the other hand, the high affinity of gold for amino acids con-
taining molecules can be used for HDP conjugation to magnetic and semiconductor 
nanoparticles, through the postsynthesis incorporation of a thin shell or islands of 
gold on the surface of magnetite or CdS, for instance (Odio et al. 2014). The adsorp-
tion of gold atoms on thiol-capped magnetite nanoparticles produces gold islands at 
their surface. The conjugation of peptides to such gold-containing nanostructures 
leads to the formation of multifunctional conjugates (Figure 5.3).

5.8 � CONCLUSIONS

Despite the broad spectrum activity of HDPs and success in preclinical models, the 
clinical results of these molecules have not been good enough to approve them for 
medical use. Alternatives to reduce the toxicity and increase the stability, efficacy, 
and biodistribution of HDPs are urgently needed. Nanotechnology could provide 
a solution for these problems. Nanoparticles could be a perfect carrier for HDPs 
because of their multifunctional activities. Because the antimicrobial properties of 
both molecules have different mechanisms of action, the conjugated peptides (HDP–
NP) could have an enhanced activity. The preparation and study of these multi-
functional conjugates open unpredictable opportunities and result in biological and 
pharmacological applications to combating infectious diseases.
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